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In this paper we present a new ODE based framework for modelling disease transmission on
dynamic contact networks. We adapt and extend the effective degree model for a static network to
account for the random creation and deletion of links between individuals. The resulting set of ODEs
is solved numerically and results are compared to those obtained using individual-based stochastic
network simulations. We show that the ODEs display excellent agreement for the evolution of both
the disease and the network, and is able to accurately capture the epidemic threshold for a wide
range of parameters. Using the proposed model we show that mild epidemics can be controlled while
keeping the contact network well connected, and this is in contrast with severe epidemics, where
successful control via link removal leads to a disconnected network.

The rise in the popularity and relevance of networks as
a tool for modelling complex systems is well illustrated
by the ever increasing body of research concerned with
the spread of diseases within host populations exhibit-
ing non-trivial contact structures [1, 2]. Networks offer
an intuitive and relatively simple modelling framework
which enables us to relax the strong implicit assumptions
of more classical ODE-based approaches and to account
for complexities in the contact structure of the host pop-
ulation [3–7]. This approach has shown that epidemic
thresholds not only depend upon the infectiousness of
the pathogen, or even simply the mean number of con-
tacts per individual, but also upon the exact structure
of the host population [8, 9]. In addition to its inherent
theoretical value, this paradigm has immediate practical
benefits, as the primary role of public health services is to
put measures in place to bring diseases below their epi-
demic threshold. These measures depend heavily upon
disrupting the transmission of a disease through vaccina-
tion and also more directly, through the closure of pub-
lic services, or even quarantine and curfews in extreme
cases. Hence the knowledge of how the structure of the
host population is contributing to the spread of a disease
would help to increase the efficacy of any intervention
[10].

Despite advances in both rigorous and non-rigorous
analysis of networks, a key assumption in many network
models is that contacts are fixed for the duration of an
epidemic and that the disease propagates with a constant
intensity across links. This will not be true for many dis-
eases, especially those with long infectious periods, or
diseases that become endemic. Indeed human contact
patterns are well described by short repeated events, with
individuals having a number of contacts best described by
some appropriate time dependent random variable [11].
Furthermore, individuals and the communities they be-
long to are likely to change their contact behaviour as a
result of natural evolution and endogenous or exogenous
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perturbations such as a disease outbreak [12].
Recently a number of studies have attempted to relax

this assumption by allowing the networks to evolve over
time [13, 14]. Thus the dynamics of the disease is cou-
pled with the dynamics of the network itself, with both
potentially acting as a feedback mechanism for the other
[15, 16]. A number of micro modelling studies have used
individual based simulations to investigate how diseases
propagate on a network that evolves over time, often in
response to the disease itself [17, 18]. Other papers have
built macro ODE-based models that describe the coevo-
lution of networks and the diseases that spread along
them [19, 20]. All these studies confirm that dynamic
networks and the coupling between the two dynamics
lead to a richer spectrum of behavior than is found for
epidemics on static networks, such as bi-stability and os-
cillations.

A crucial feature of allowing the co-evolution of disease
and network is the interplay and feedback between both
dynamics, however this interdependence is difficult to
measure empirically. In this paper we propose a dynamic
network model that is based on link activation-deletion,
be it random or adapted to be link-type dependent [21].
This dynamic network coupled with the simple SIS dis-
ease dynamics, leads to the full model. We study this
system and explore to what extent a macro ODE-based
model proposed for static networks is flexible enough to
be adapted to the dynamic network case. Specifically,
we focus on the SIS effective degree model for a static
network as described in detail by Lindquist et al. [22].
The static model is governed by a closed set of ODEs,
and here we modify it to allow for the random creation
and deletion of links over time. The modified dynamic
effective degree model is also governed by a closed set
of ODEs, which is then solved and compared to results
from individual based simulations and its ability to ac-
curately predict the epidemic threshold over a range of
parameters is investigated.

The effective degree modelling approach for SIS type
disease dynamics [22] not only categorizes the disease
state of each individual as susceptible (S) or infected (I)
but also describes the state of their immediate neighbour-
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FIG. 1: Flow chart showing transitions in the dynamic SIS

effective degree model. The directed red, green, blue and
black lines represent changes in state of an individual via in-
fection, recovery, link creation and link deletion respectively.
The thick lines represent changes to the individual, and thin
lines represent changes to that individual’s immediate neigh-
bourhood. In relation to nodes of type Xsi, X ∈ {S, I}, infec-
tion of neighbours occurs at rate sGX , recovery of neighbours
at rate γi, creation of a susceptible (infectious) link at rate
α(M − (s + i))PS(I) and deletion of a susceptible (infectious)
link at rate ωs(i), where:
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hood. This is achieved by keeping track of the number
of susceptible and infected neighbours that belongs to a
given node. For example, Ssi represents the number of
susceptible individuals that have s susceptible and i in-
fected neighbours. This gives rise to more states and
equations than would be seen in a standard pairwise
model, where equations are given at the population level
for all types of singles and pairs [23]. For example if a
Ssi type node became infected via one of its i infectious
neighbours, this individual would move to state Isi as
only the status of the node itself is changing. However,
if one of the i infected neighbours of an Ssi type node
recovered then the node would enter the Ss+1,i−1 class,
whereas infection of one of the s neighbouring susceptible
nodes moves the Ssi type node into the Ss−1,i+1 class.

Lindquist et al. [22] defined γ to be the per node recov-
ery rate, β the per link infection rate and M the max-
imum nodal degree of a network with N nodes. They

then derived the following system of
∑M

k=1 2(k + 1) =
M(M + 3) equations:

Ṡsi = −βiSsi + γIsi + γ[(i + 1)Ss−1,i+1 − iSsi] (1)
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for {(s, i) : s, i ≥ 0, 1 ≤ k = s + i ≤ M}. This is the SIS
effective degree model for a static contact network.

In oder to adapt this model to describe SIS dynamics
on a dynamic contact network, we introduce two new
parameters: ω, the per link deletion rate and α, the per
non-link, or more precisely the per potential link creation
rate. These rates could also be made to be link-type
dependent, i.e. ωSI would be the per SI link deletion
rate. For the dynamic network cae, the system size will

increase slightly from M(M+3) to
∑M

k=0 2(k+1) = (M+
1)(M +2) equations to account for nodes of the type X0,0

where X ∈ {S, I}. In the static case, these nodes were
dynamically unimportant as they could neither infect nor
become infected by other nodes. However in the dynamic
model, they could connect to other nodes in the system
and so enter states X1,0 or X0,1 depending on the state
of the node with which they have just formed a new link.

The total number of links in the system at time t, Λ(t),
and potential links, Φ(t) can easily be calculated from the
effective degree formulation as

Λ(t) =

M∑

k=0

∑

j+l=k

(j + l)(Sjl + Ijl),

Φ(t) =
M∑

k=0

∑
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with the mean nodal degree given by 〈k(t)〉 = Λ(t)
N

. At
the equilibrium, αΦ = ωΛ which gives us the mean nodal
degree:

〈k〉∗ =
α

α + ω
M. (3)

Note that Eq. (3) does not depend on the system size,
N , but rather on the maximum nodal degree, M . This is
important because in the static model, M is simply given
by the node or nodes with the highest degree whilst in
the dynamic case, however, M can be considered as a
carrying capacity, whereby no node can have more than
M links. This subtle but important difference means
that in the dynamic case, M itself can be regarded as a
parameter which controls the potential level of network
saturation.

When adding the terms that govern link creation and
deletion to Eqs. (1) and (2) it is far simpler to construct
the terms that govern deletion of existing links than those
for the creation of new links. Links to nodes of type Xsi

where X ∈ {S, I} are cut at a rate proportional to their
degree, so individuals will leave Xsi through link dele-
tion at a rate ω(s + i) and will either enter the Xs−1,i

or Xs,i−1 classes depending on the state of the nodes to
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FIG. 2: Time evolution of I(t) =
∑M

k=0

∑
j+l=k

Ijl(t) and

〈k〉(t) = Λ(t)
N

for three different values of M . Results from
the ODE are given by solid lines and those from simulation
by points. In all cases N = 1000, I0 = 100, α = 0.05, ω =
0.1, β = 0.5 and γ = 1. The initial network is a regular
random graph with k = 4. In each case, mean values from
the stochastic simulations were found by averaging over 100
repetitions, with the individual realisations plotted in grey.

which they were previously connected. Similarly individ-
uals can enter state Xsi if they were in states Xs,i+1 or
Xs+1,i and a link to an infected or susceptible node was
deleted respectively.

When creating new links to nodes of type Xsi, there
are M − (s + i) stubs remaining, so nodes will transi-
tion out of this state at a rate α(M − (s + i)) and will
either enter the Xs+1,i or Xs,i+1 classes depending on
the state of the node to which they have just connected.
The rate at which nodes enter the Xsi class from ei-
ther Xs−1,i or Xs,i−1 depends not only on the number
of stubs still available in the node in question, but also
on the probability that the newly created link attaches
to a node of state S or I respectively. So nodes enter
Xsi from Xs−1,i at the rate αPS(M − (s − 1 + i)), and
nodes enter Xsi from Xs,i−1 at rate αPI(M −(s+ i−1)),

where PX =
∑

M
k=0

∑
j+l=k(M−(j+l))Xjl∑

M
k=0

∑
j+l=k(M−(j+l))(Sjl+Ijl)

, X ∈ {S, I} is

the probability of picking an available stub belonging to
nodes of type X where X ∈ {S, I}. The full set of tran-
sitions captured by this model is shown in Fig. 1.

The addition of these terms to Eqs. (1) and (2) trans-
forms the SIS effective degree model for a static network
into one that captures the spread of SIS type diseases
on a dynamic contact network and is described by the
following system of (M + 1)(M + 2) equations:

Ṡsi = −βiSsi + γIsi + γ[(i + 1)Ss−1,i+1 − iSsi] (4)
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for {(s, i) : s, i ≥ 0, 0 ≤ k = s + i ≤ M}. This system is
the dynamic SIS effective degree model.

As shown in Fig. 2, the ODEs given by Eqs. (4) and
(5) closely capture the time evolution of an epidemic as
predicted by stochastic simulations. The only parameter
that is varied in Fig. 2 is M , and it is interesting to note
the effect it has on the evolution of the disease. As per
Eq. (3), the mean nodal degree at equilibrium is depen-
dent on M , and hence, given the same initial network
configuration and values of α and ω, the network either
loses or gains links as the system evolves. Thus varying
the carrying capacity alone leads to different outcomes
depending on whether the network can reach a level of
connectedness that allows an epidemic to spread and be-
come established. Allowing M to become an active model
parameter that is able to control the outcome of an epi-
demic has potentially interesting real world implications.
The number of contacts per person is a natural, count-
able property unlike the other model parameters, such as
ω, which are more difficult to infer. Therefore local con-
straints that limit the maximum number of contacts per
person could be potentially used as a metric when pro-
moting safe behaviour at a population level in the event
of an outbreak or other public health crisis.

In Fig. 3, for a given value of α, M and β, the epidemic
threshold has been calculated from the ODEs in terms of
ω and compared to that predicted by simulations. The
agreement is excellent and this is strong evidence that the
dynamic effective degree model accurately captures the
evolution of an epidemic on a network with random link
creation and deletion. When considering the (β, ω) pa-
rameter space used for the threshold plot in Fig. 3, there
are three distinct regions that are worth noting. Firstly,
given an initial starting network, it is possible to calcu-
late the threshold value of β in the static network case.
For the regular random graph with k = 4 used here, that
value is β∗ ≈ 0.36. For values of β < 0.36, the relative
time scales of disease and network evolution are crucial
in determining whether or not an epidemic will occur. In
this situation, the network needs to quickly evolve to be-
come more densely connected in order for there to be an
outbreak, and as a result the system is very sensitive to
stochastic effects and initial conditions. This would be
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FIG. 3: Epidemic threshold plot in the (β, ω) parameter space
for four distinct values of α. Results from the ODE are given
by solid lines and those from simulation by solid points. In
each case, N = 1000, I0 = 10, M = 20 and γ = 1. The initial
network is a regular random graph with k = 4.

exacerbated on an initial network with a heterogeneous
degree distribution, where the placement of the initial
infected individuals becomes crucial in determining the
likelihood of an epidemic. The second area of interest
is when the disease is highly infectious and as a result
requires a high value of ω to drive the epidemic below
threshold. For a given α and M , Eq. (3) allow us to cal-
culate the value of ω needed to drive the equilibrium av-
erage degree below two. If a network has 〈k〉∗ < 2 then it
becomes fragmented, with many nodes becoming uncon-
nected. In these situations, the value ω needed to prevent

an epidemic virtually destroys the network. In terms of
real world implications, a large value of ω corresponds to
a situation of strict quarantine and curfew. In between
these two cases lies a region within which an epidemic
would take hold naturally, given the initial network, but
which can be prevented by a value of ω that leaves the
network well connected. In the proposed model, the cre-
ation and deletion of links happens at random and as
such the network evolves independently of the disease,
although the evolution of the disease is dependent upon
the network. Indeed this leads to observing dynamic net-
works with degree distributions close to Poisson with the
mean given by Eq. (3), and this is confirmed by results
from both the ODEs and simulations.

In summary, this paper has proposed an effective de-
gree model for epidemics on dynamic networks. We have
shown that this provides a reliable modelling framework
that can be used for the analytical and semi-analytical
study of coupled disease and network dynamics. In future
work, this modelling framework could be adapted and
extended to account for individuals cutting and creating
links with knowledge of the state of others in the popu-
lation, i.e., link-type dependent network dynamics. This
two-way feedback will lead to more sophisticated network
properties such as degree correlations, high clustering or
even network fragmentation. In such cases ODE models
need to be used with care, making sure that the agree-
ment with simulations remains valid. Besides modelling
epidemics, this framework could also be used to study
the spread of information, beliefs and new ideas within
populations, and as such could have implications across
a wide range of disciplines.
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